A sequence whose consecutive terms have a common difference between consecutive terms is called an arithmetic sequence. We call the common difference d.

$$a_{11}a_{21}, a_{31}, a_{41}, \dots, a_{n_1}, \dots$$

$$a_{2}-a_{11} = a_{32}-a_{21} = a_{41}-a_{52}\dots = a_{41}$$

Determine whether the sequence is arithmetic. If so, find the common difference.

Example:

1. Write the first four terms of the arithmetic sequence whose nth term is 3n-1. Then find the common difference between consecutive terms.

difference between consecutive terms.

$$\begin{array}{lll}
(1 = 3(1) - 1 = 2 & 5 - 2 = 3 \\
(1 = 3(2) - 1 = 5 & 8 - 5 = 3 \\
(1 = 3(3) - 1 = 6 & 11 - 8 = 3)
\end{array}$$

$$\begin{array}{lll}
(1 = 3(3) - 1 = 6 & 11 - 8 = 3 \\
(1 = 3(4) - 1 = 11 & 11 - 8 = 3)
\end{array}$$

1,4,9,16,... Not arithmetic b/c 9-4 ≠ 4-1

$$a_1 = a_1$$
 $a_2 = a_1 + d$
 $a_3 = a_1 + 2d$
 $a_4 = a_1 + 3d$
 $a_5 = a_1 + (n-1)d$

The nth Term of an Arithmetic Sequence:

The *n*th Term of an Arithmetic Sequence:

The *n*th term of an arithmetic sequence has the form $a_n = a_n + (n-1)a_n$ where *d* is the common difference between consecutive terms of the sequence and a_n is the first tem.

Example:

2. Find a formula for the nth term of the arithmetic sequence whose common difference is 5 and whose first term is -1.

$$Q_1=-1$$
 $d=5$

$$Q_n=-1+(n-1)(5)$$
or $Q_n=-1+5(n-1)$

Example:

3. The eighth term of an arithmetic sequence is 25, and the 12th term is 41. Write the first 11 terms of this sequence.

this sequence.
$$0_8 = 25$$
 $0_1 = 25$
 $0_2 = 25$
 $0_3 = 25$
 $0_4 = 25 = 16$
 $0_4 = 0_4 + (n-1)(4)$
 $0_6 = 0_4 + (n-1)(4)$
 $0_7 = 0_4 + (n-1)(4)$
 $0_8 = 25$
 $0_8 = 25$
 $0_8 = 25$
 $0_8 = 25$
 $0_8 = 25$
 $0_8 = 0_4 + (n-1)(4)$
 $0_8 = 25$
 $0_8 = 0_4 + (n-1)(4)$
 $0_8 = 0_4 + (n-1)$

4. Find the tenth term of the arithmetic sequence that begins with 7 and 15

7,15,...
$$d_1 = 0$$

$$Q_{n} = 7 + 8(n-1)$$

$$Q_{10} = 7 + 8(10-1)$$

$$= 7 + 72$$

$$= [79]$$

The Sum of a Finite Arithmetic Sequence

Sums are 101
$$S_{n} = \frac{n}{2} (a_{1} + a_{n})$$

$$S_{n} = \frac{n}{2} (a_{1} + a_{1})$$

$$S_{n} = \frac{n}{2} (a_{1} + a_{1})$$

$$S_{n} = \frac{n}{2} (a_{1} + a_{2})$$

$$S_{n} = \frac{n}{2} (a_{1} +$$

Example:

5. Find the sum: 40+37+34+31+28+25+22

$$N=7 S_7 = \frac{7}{2} (40 + 22) = \frac{7}{2} (62) = 217$$

Arithmetic Sequences

6. Find the sum of the integers (a) from 1 to 35 and (b) from 1 to 2N.

a)
$$n=35$$

 $S_{2N} = \frac{2N}{2}(1+2N)$
 $S_{2N} = \frac{2N}{2}(1+2N)$
 $= [N(1+2N)]$
or $N+2N^2$

Partial Sum of an Arithmetic Sequence

Example

7. Find the 120th partial sum of the arithmetic sequence 6, 12, 18, 24, 30,...
$$Q_1 = 6 - 6 = 6$$

$$N = 120 \qquad S_{120} = \frac{120}{2} (6 + 726) \qquad Q_1 = 6 - 6 = 6$$

$$= 60(726) \qquad Q_{120} = 6 + (120 - 1)(6)$$

$$= 43, 560 \qquad Q_{120} = 720$$

9. A company sells \$160,000 worth of printing paper during its first year. The sales manager has set a goal of increasing annual sales of printing paper by \$20,000 each year for 9 years. Assuming that this goal is met, find the total sales of printing paper during the first 10 years this company is in operation.

$$A_1 = 160,000$$

 $A = 20,000$
 $A = 160,000 + 9(20,000)$
 $A = 160,000 + 9(20,000)$
 $A = 160,000 + 9(20,000)$
 $A = 160,000 + 340,000$
 $A = 160,000 + 340,000$
 $A = 160,000 + 340,000$
 $A = 160,000 + 340,000$