A SYSTEM OF EQUATIONS is a set of two or more equations with $\frac{\text{the same variables}}{2 \times 4 \text{ y} = 5}$ $3 \times -2 \text{ y} = 4$

A SOLUTION(S) to the system are variable values that satisfy ALL of the equations. (In other words, the solution values must make every equation of the system true.)

Check
$$(2,1)$$
 Check $(0,5)$
 $2(2)+(1)=5?$ $2(0)+5=5?$ $3(2)-2(1)=4?$ $3(0)-2(5)=4?$ $(0,5)$ not a $(0,5)$ not a $(0,5)$

check
$$(0,5)$$

 $2(0)+5=5?$ \checkmark
 $3(0)-2(5)=4?X$
 $(0,5)$ not a solution

The Method of Substitution

- 1. Solve one of the equations for one variable in terms of the other.
- Substitute the expression found in Step 1 into the other equation to obtain an equation in one variable.
- Solve the equation obtained in Step 2.
- 4. Back-substitute the value obtained in Step 3 into the expression obtained in Step 1 to find the value of the other variable.
- 5. Check that the solution satisfies each of the original equations.

Examples:

1. Solve the system of equations using substitution.

the system of equations using substitution.

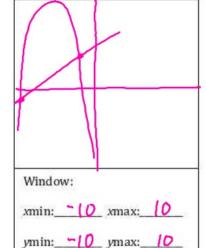
$$\begin{cases} x-y=0 & x=4 \\ 5x-3y=6 & x=3 \\ 5(y)-3y=6 & (3,3) \end{cases}$$

$$\begin{cases} 2y=6 \\ 2y=6 \\ 2y=6 \end{cases}$$

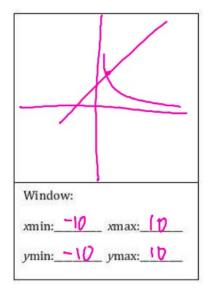
2. A total of \$25,000 is invested in two funds paying 6.5% and 8.5% simple interest. The yearly interest is \$2000. How much is invested at each rate?

100. How much is invested at each rate?

$$\chi = \$1 \text{ invested at } (6.5\%)$$
 $\chi = 1 \text{ invested at } (6.5\%)$
 $\chi = 2 \text{ invested at } (6.5\%)$
 $\chi = 2$


Graphical Approach to Finding a Solution

One method of finding solutions to systems is to graph the equations and find their intersections.


The intersection(s) is a solution because the equations have the same X-and y-values at that point. $(\dot{x}_1 y)$

Use a calculator to graph each system. Find a window size that shows ALL intersections, sketch a picture that shows ALL intersections, then determine the solution(s). *round to 2 decimal places*

1.
$$\begin{cases} y = x + 7 \\ y = -x^2 - 10x - 15 \end{cases}$$

$$\begin{cases} y = 3 - \log x \\ -2x + y = 1 \end{cases}$$

p. 473: 5, 8, 10, 11, 14, 17, 21, 25, 29, 33, 39, 45, 57, 59