Examples of polynomial functions:

$$f(x) = ax + b$$
 linear
 $f(x) = c$ constant
 $f(x) = x^2$ quadratic

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$ is a polynomial function of x with degree n.

Definition of Quadratic Function:

Let a, b, and c, be real numbers with $a \neq 0$. The function $f(x) = ax^2 + bx + c$ is called a **quadratic** function.

$$f(x)=x^2+6x+2$$
 general form
 $g(x)=2(x+1)^2-3$ vertex form/standard
 $m(x)=(x-2)(x+1)$ factored form

The graph of a quadratic function is called a parabola.

All parabolas are symmetric with respect to a line called the axis of symmetry (or axis) of the parabola. The point where the axis intersects the parabola is the vertex of the parabola.

Graphing a Quadratic Function Using Transformations

- 1. Begin with the parent function $f(x) = x^2$.
- 2. Rewrite the function in vertex form $f(x) = a(x-h)^2 + k$ by completing the square.
- 3. Transform with the following:
 - a: If a is positive, the graph opens Up. The y-coordinate of the vertex is a minimum value. If a is negative, the graph opens down. The y-coordinate of the vertex is a maximum value. If |a| > 1, the graph is <u>Marrower</u> than the graph of $f(x) = x^2$. ver4. Stretch If |a| < 1, the graph is <u>Wider</u> than the graph of $f(x) = x^2$. Vert. Shrink

h: h controls the horizontal shift (left and right). +h: left -h: right
k: k controls the vertical shift (up and down). +k: up -k: down

Vertex: (h,k) Axis of Symmetry: x = h

Example: Sketch the graph of each quadratic function and compare it with the graph of $y = x^2$.

a.
$$f(x) = \frac{1}{4}x^2$$

b.
$$k(x) = -4x^2 + 2$$

vertex: (0,0)

axis: x=0

Wider than x2

× 4 2 \\ \(\frac{1}{4}(2)^2 = 1

$$(x-2)^2$$

c. $f(x) = (x+2)^2 - 3$

d.
$$f(x) = -x^2 + 1$$

Vertex: (-2,-3)

axis: x=-2

leftz down 3

Using Standard Form of a Quadratic Function

Completing the Square: Figuring out what constant to add to a binomial of the form $x^2 + bx$ to make it into a perfect square trinomial, then writing the result in factored form.

Completing the Square for the Binomial $x^2 + bx$

- 1. Divide the coefficient of the x-term by 2. $\left(\text{Find } \frac{b}{2}\right)$.
- 2. Square the answer from step 1. $\left(\frac{b}{2}\right)^2$.
- 3. Add the result of step 2 to the binomial.
- 4. Rewrite as a perfect square: $\left(x + \frac{b}{2}\right)^2$.

Example: Add the proper constant to the binomial to make it into a perfect square trinomial. Then factor the trinomial.

Examples: Add the proper constant to each binomial to make it into a perfect square trinomial. Then factor the

a)
$$x^2 + 16x + 64 = (x + 8)$$

 $\frac{16}{2} = 8$

d)
$$x^2 - 3x + \frac{9}{4} = (x - \frac{3}{2})^2$$

a)
$$x^{2} + 16x + (64 = (x + 32)^{2})$$
 d) $x^{2} - 3x + \frac{5}{4} = (x - \frac{3}{2})^{2}$ e) $x^{2} + \frac{4}{3}x + \frac{4}{9} = (x + \frac{2}{3})^{2}$ $\frac{16}{2} = 8$ 8^{2} $\frac{2}{3}$ $(-\frac{3}{2})^{2}$ $\frac{4}{3}$ $(\frac{2}{3})^{2}$ $\frac{4}{3}$ $(\frac{2}{3})^{2}$

Writing $f(x) = (ax^2 + bx) + c$ in Vertex Form

- Group ax² and bx together in parentheses.
- 2. If $a \ne 1$, factor out a from $ax^2 + bx$. Include a negative if the quadratic term is negative.
- Complete the square (divide b by 2 and square the result). Add the answer inside the parentheses. Keep the equation balanced by adding or subtracting outside the parentheses. (You are adding 0 to one side of the equation.)
- Write the expression inside the parentheses as a perfect square.

Examples: Write each equation in vertex form. Then find the vertex.

a)
$$f(x) = (x^2 - 8x) - 5$$

 $(x^2 - 9x + \frac{16}{2}) - 5 - \frac{16}{2}$
 $f(x) = (x - 4)^2 - 21$

b)
$$f(x) = (3x^2 + 6x) + 1$$

 $3(x^2 + 2x + 1) + 1 - 3$
 $|f(x)| = 3(x + 1)^2 - 2$

Using Standard Form to Graph a Parabola

Example: Sketch the graph of $f(x) = 3x^2 - 6x + 4$. Identify the vertex and the axis of the parabola.

$$f(x) = (3x^{2} - 6x) + 4$$

$$= 3(x^{2} - 2x + 1) + 4 - 3$$

$$= 3(x - 1)^{2} + 1 \qquad \text{Vertex: (1,1)}$$

$$axis: x = 1$$

Finding the Vertex and x- intercepts of a Parabola

Example: Sketch the graph $f(x) = (x^2 - 4x) + 3$. Identify the vertex and x-intercepts. (To find x-intercepts, you may factor or use the Quadratic Formula).

$$f(x) = (x^2 - 4x + 4) + 3 - 4$$

 $f(x) = (x-2)^2 - 1$ Vertex: (2,-1)

for x-intercepts factor f(x), then set = 0

$$f(x) = x^2 - 4x + 3$$
 $x - 3 = 0$ $x = 3$ $x - 3 = 0$ $x = 3$

Writing a Quadratic Equation when You Know the Vertex and Another Point

- 1. Use vertex form: $y = a(x-h)^2 + k$
- 2. Plug in the vertex for h and k.
- 3. Plug in the other point for x and y (or f(x)).
- 4. Simplify and solve for a. (Don't forget order of operations.)
- 5. Write your final answer by plugging a, h, and k back into vertex form.

Example: Find the quadratic function whose vertex is (3,-2) and whose y-intercept is 4. Graph the function.

passes through the point (-6,15).

$$\begin{array}{l}
 15 = \alpha \left(-6 + 4\right)^{2} + 11 \\
 -11 \\
 4 = \alpha \left(-2\right)^{2} \\
 4 = \alpha \left(4\right) \\
 \alpha = 1
 \end{array}$$

Finding the Minimum and Maximum Values

By completing the square, we can rewrite $f(x) = ax^2 + bx + c$ as $f(x) = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$.

This gives us a quick way to find the vertex when the equation is in standard form:

$$y = x^{2} + 6x - 12$$

$$y = (-3)^{-1}6(-3)^{-12}$$

$$= 9^{-18-12}$$

$$= -21$$

$$b$$

$$(-3,-21)$$

Vertex:
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

• The x-coordinate of the vertex is
$$\frac{b}{2a}$$
.
• To find the y-coordinate, plug the x-coordinate into the original equation. $x : -\frac{b}{2(1)} = -3$

• Vertex: $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

• Axis of Symmetry: The line $x = -\frac{b}{2a}$

• Parabola opens up if $a > 0$; the vertex is a minimum point.

Parabola opens up if a > 0; the vertex is a minimum point. Parabola opens down if a < 0; the vertex is a maximum point.

	Standard Form	Vertex Form	Factored Form
Equation	$y = ax^2 + bx + c$	$y = a(x-h)^2 + k$	y = a(x-p)(x-q)
Vertex	Complete the square and write in vertex form. or- $x = \frac{-b}{2a}$ Plug the x-coordinate into the equation to get the y-coordinate.	(h,k)	Find average of p and q . $x = \frac{p+q}{2}$ (The x -coordinate of the vertex is at the midpoint of the x -intercepts.) Plug the x -coordinate into the equation to get the y -coordinate.
y-intercept	(Replace x with zero. Solve for y.)	Replace x with zero. Solve for y.	Replace x with zero. Solve for y.
x-intercepts (roots, zeros, solutions)	Replace y with zero. Solve for x by factoring or quadratic formula.	Replace y with zero. Solve for x by isolating the perfect square and using the square root principle. (Don't forget the ±.)	p and q (Replace y with zero. Solve for x using the zero product property.)

For all forms:

Direction of Opening	Up if <i>a</i> is positive Down if <i>a</i> is negative	
Vertical Stretch	a	
Counting Pattern (Shortcut)	Start at the vertex. Find more points by counting:	

p. 120: 7-12, 15, 17, 21, 23, 29, 37, 39, 44, 45, 47, 49, 51, 57, 77, 81